Abstract
The risk of financial positions is measured by the minimum amount of capital to raise and invest in eligible portfolios of traded assets in order to meet a prescribed acceptability constraint. We investigate nondegeneracy, finiteness and continuity properties of these risk measures with respect to multiple eligible assets. Our finiteness and continuity results highlight the interplay between the acceptance set and the class of eligible portfolios. We present a simple, alternative approach to the dual representation of convex risk measures by directly applying to the acceptance set the external characterization of closed, convex sets. We prove that risk measures are nondegenerate if and only if the pricing functional admits a positive extension which is a supporting functional for the underlying acceptance set, and provide a characterization of when such extensions exist. Finally, we discuss applications to set-valued risk measures, superhedging with shortfall risk, and optimal risk sharing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.