Abstract
AbstractWe review the influential research carried out by Chris Skinner in the area of statistical disclosure control, and in particular quantifying the risk of re-identification in sample microdata from a random survey drawn from a finite population. We use the sample microdata to infer population parameters when the population is unknown, and estimate the risk of re-identification based on the notion of population uniqueness using probabilistic modelling. We also introduce a new approach to measure the risk of re-identification for a subpopulation in a register that is not representative of the general population, for example a register of cancer patients. In addition, we can use the additional information from the register to measure the risk of re-identification for the sample microdata. This new approach was developed by the two authors and is published here for the first time. We demonstrate this approach in an application study based on UK census data where we can compare the estimated risk measures to the known truth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series A: Statistics in Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.