Abstract

The human brain areas MT and MST have been studied in great detail using fMRI with regards to their motion processing properties; however, to what extent this corresponds with single cell recordings remains to be fully described. Average response over human MT+ has been shown to increase linearly with motion coherence, similar to single cell responses. In response to motion density some single cell data however suggest a rapid saturation. We ask how the combination of these responses is reflected in the population response. We measured the blood oxygen level dependent (BOLD) response function of MT and MST using a motion density signal, comparing with area V1. We used spatially fixed apertures containing motion stimuli to manipulate the area covered by motion. We found that MT and MST responded above baseline to a very minimal amount of motion and showed a rather flat response to motion density, indicative of saturation. We discuss how this may be related to the size of the receptive fields and inhibitory interactions, although necessarily residual attention effects also need to be considered. We then compared different types of motion and found no difference between coherent and random motion at any motion density, suggesting that when combining response over several motion stimuli covering the visual field, a linear relationship of MT and MST population response as a function of motion coherence might not hold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call