Abstract

The (relative) energies of symmetric tilt grain boundaries in a strongly segregated lamellar block copolymer are determined by analysis of the dihedral angles at grain-boundary triple junctions. The analysis reveals two regimes: at low and intermediate misorientations (corresponding to a tilt-angle range 0≤θ≤85°) the grain-boundary energy is found to depend on the tilt angle as E(θ)∼θ(x), with 2.5>x≥0. At large misorientations the grain-boundary energy is found to be independent (within the experimental uncertainty) of the angle of tilt. The transition between the two scaling regimes is accompanied by the transition of the grain-boundary structure from the chevron to the omega morphology. Grain-boundary energy and frequency are found to be inversely related, thus suggesting boundary energy to be an important parameter during grain coarsening in block-copolymer microstructures, as it is in inorganic polycrystalline microstructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.