Abstract

Short range correlated nucleon-nucleon ($NN$) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner ("spectator-nucleon tagging"). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the lab frame by the momentum of the ion beam. To determine the feasibility of these studies with the planned EIC detector configuration, we have simulated quasi-elastic scattering for two electron and ion beam energy configurations: 5 GeV $e^{-}$ and 41 GeV/A ions, and 10 GeV $e^{-}$ and 110 GeV/A ions. We show that the knocked-out and recoiling nucleons can be detected over a wide range of initial nucleon momenta. We also show that these measurements can achieve much larger momentum transfers than current fixed target experiments. By detecting both low and high initial-momentum nucleons, the EIC will provide the data that should allow scientists to definitively show if the EMC effect and short-range correlation are connected, and to improve our understanding of color transparency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.