Abstract

Abstract In summary, the redox conversions of MT cysteines are likely to be the principal mechanisms for regulation of metal binding and release by this protein. Oxidative and/or nitrosative challenges can serve to promote metal ion release from MT to render their delivery to specific target proteins. It is tempting to consider the potential roles of MTs as redox sensors because of their high sensitivity to cysteine modification, as well as their potential to amplify signals by releasing multiple metal ions. In other words, MTs may act early in a biological signaling cascade that triggers metal-dependent biochemical and cellular responses. Alternatively, uncontrolled release of metals by excessive oxidative stress may contribute to metal toxicity. Because oxidative and nitrosative signaling is ubiquitous within cells, the physiological function of MT demands that efficient recycling of modified cysteines be operative. Little is known regarding the potential mechanisms for the regeneration of MT after oxidative/nitrosative modification, but they may involve endogenous dithiols, such as thioredoxin, and pharmacologically relevant dithiols, such as dihydrolipoate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.