Abstract

This paper presents a novel four-stage algorithm for the measurement of the rank correlation coefficients between pairwise financial time series. In first stage returns of financial time series are fitted as skewed-t distributions by the generalized autoregressive conditional heteroscedasticity model. In the second stage, the joint probability density function (PDF) of the fitted skewed-t distributions is computed using the symmetrized Joe–Clayton copula. The joint PDF is then utilized as the scoring scheme for pairwise sequence alignment in the third stage. After solving the optimal sequence alignment problem using the dynamic programming method, we obtain the aligned pairs of the series. Finally, we compute the rank correlation coefficients of the aligned pairs in the fourth stage. To the best of our knowledge, the proposed algorithm is the first to use a sequence alignment technique to pair numerical financial time series directly, without initially transforming numerical values into symbols. Using practical financial data, the experiments illustrate the method and demonstrate the advantages of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.