Abstract
The Birkhoff Ergodic Theorem asserts under mild conditions that Birkhoff averages (i.e. time averages computed along a trajectory) converge to the space average. For sufficiently smooth systems, our small modification of numerical Birkhoff averages significantly speeds the convergence rate for quasiperiodic trajectories —by a factor of 1025 for 30-digit precision arithmetic— making it a useful computational tool for autonomous dynamical systems. Many dynamical systems and especially Hamiltonian systems are a complex mix of chaotic and quasiperiodic behaviors, and chaotic trajectories near quasiperiodic points can have long near-quasiperiodic transients. Our method can help determine which initial points are in a quasiperiodic set and which are chaotic. We use our weighted Birkhoff average to study quasiperiodic systems, to distinguishing between chaos and quasiperiodicity, and for computing rotation numbers for self-intersecting curves in the plane. Furthermore we introduce the Embedding Continuation Method which is a significantly simpler, general method for computing rotation numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.