Abstract

Protein-protein interactions (PPIs) are increasingly recognized for their roles in functional cellular networks and their importance in disease-targeting contexts. Assessing PPI in the native cellular environment is challenging and requires specific and quantitative methods. Bioluminescence resonance energy transfer (BRET) is a biophysical process that can be used to quantify PPI. With Nanoluciferase bioluminescent protein as a donor and a fluorescent chloroalkane ligand covalently bound to HaloTag protein as an acceptor, NanoBRET provides a versatile and robust system to quantitatively measure PPI in living cells. BRET efficiency is proportional to the distance between the donor and acceptor, allowing for the measurement of PPI in real time. In this paper, we describe the use of NanoBRET to study specific interactions between proteins of interest in living cells that can be perturbed by using small-molecule antagonists and genetic mutations. Here, we provide a detailed protocol for expressing NanoLuc and HaloTag fusion proteins in cell culture and the necessary optimization of NanoBRET assay conditions. Our example results demonstrate the reliability and sensitivity of NanoBRET for measuring interactions between proteins, protein domains, and short peptides and quantitating the PPI antagonist compound activity in living cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call