Abstract

Pressure distribution inside shoes is of great importance for orthopaedic and biomechanical inquiries. Especially in sports, safety and comfort depend essentially on this quantity, which also determines whether a shoe is well suited for a certain discipline. Therefore, the measurement of pressure distribution allows detailed and objective statements about these factors. Using a set of newly developed thin and highly flexible measuring mats and the corresponding electronic equipment, such statements have become possible. First results with this method were obtained in alpine skiing. 8 different types of ski boots (sizes 5 and 8) worn by 14 subjects were tested on different foreward leans and temperatures using 7-point measuring mats (2 cm2/point) fixed between the boot shaft and the front of the lower leg of each leg. Additional measurements on three different types of boots using a 3 x 24-point mat (1 cm2/point) for the lower leg, as well as measurements underneath the foot with a 14-point (2 cm2/point) and a 80-point (1 cm2/point) mat were performed. A complementary determination of the force at the heel element of a ski binding and a registration of muscular activity (EMG) helped in the interpretation of the results. Some field research using telemetry completed our study. Considerable variations between different boots were found in value and location of pressure maxima. Traditional boots show high pressure values over the instep at foreward leans of 35 degrees and a rise of pressure underneath the forefoot while fixing the buckles, whereas minimal pressure over the instep, no compression of the forefoot and a pressure maximum near the upper end of the shaft are observed in rear entry boots. The force at the heel-important for binding release-varies widely between different boots at the same foreward lean. There was no asymmetry between the pressure distributions of right and left. The pressure distributions for different subjects measured in the same boot were very similar. The temperature dependence of pressures is strongly influenced by the construction principle of the boot: If shaft stiffness is caused by deformation of plastics, boots become much stiffer at the freezing point than they are at room temperature. Well-suited ski boots should cause low pressure over the instep and show a relatively low maximum in the upper part of the shaft, in order to allow a good transmission of torque, which is necessary for a safe binding release and easy skiing without fatigue. The shaft stiffness must not depend strongly on temperature.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.