Abstract

In July 2000, a 490-ha wildfire burned a portion of a long-term grazing study that had been established in 1924 at the US Sheep Experiment Station north of Dubois, Idaho, USA. Earlier vegetation measurements in this tall threetip sagebrush (Artemisia tripartita spp. tripartita) bunchgrass plant community documented significant changes in vegetation due to grazing and the timing of grazing by sheep. A study was initiated in May 2001 using 12 multiscale modified Whittaker plots to determine the consequences of previous grazing practices on postfire vegetation composition. Because there was only one wildfire and it did not burn all of the original plots, the treatments are not replicated in time or space. We reduce the potential effects of psuedoreplication by confining our discussion to the sample area only. There were a total of 84 species in the sampled areas with 69 in the spring-grazed area and 70 each in the fall- and ungrazed areas. Vegetation within plots was equally rich and even with similar numbers of abundant species. The spring-grazed plots, however, had half as much plant cover as the fall- and ungrazed plots and the spring-grazed plots had the largest proportion of plant cover composed of introduced (27%) and annual (34%) plants. The fall-grazed plots had the highest proportion of native perennial grasses (43%) and the lowest proportion of native annual forbs (1%). The ungrazed plots had the lowest proportion of introduced plants (4%) and the highest proportion of native perennial forbs (66%). The vegetation of spring-grazed plots is in a degraded condition for the environment and further degradation may continue, with or without continued grazing or some other disturbance. If ecosystem condition was based solely on plant diversity and only a count of species numbers was used to determine plant diversity, this research would have falsely concluded that grazing and timing of grazing did not impact the condition of the ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.