Abstract

Unlike mammals, insects such as Drosophila have multiple taste organs. The chemosensory neurons on the legs, proboscis, wings and ovipositor of Drosophila express gustatory receptors1,2, ion channels3-6, and ionotropic receptors7 that are involved in the detection of volatile and non-volatile sensory cues. These neurons directly contact tastants such as food, noxious substances and pheromones and therefore influence many complex behaviors such as feeding, egg-laying and mating. Electrode recordings and calcium imaging have been widely used in insects to quantify the neuronal responses evoked by these tastants. However, electrophysiology requires specialized equipment and obtaining measurements from a single taste sensillum can be technically challenging depending on the cell-type, size, and position. In addition, single neuron resolution in Drosophila can be difficult to achieve since taste sensilla house more than one type of chemosensory neuron. The live calcium imaging method described here allows responses of single gustatory neurons in live flies to be measured. This method is especially suitable for imaging neuronal responses to lipid pheromones and other ligand types that have low solubility in water-based solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call