Abstract

We present a technique for measuring the second-order coherence function g(2)(tau) of light using a Hanbury Brown-Twiss intensity interferometer modified for homodyne detection. The experiment was performed entirely in the continuous-variable regime at the sideband frequency of a bright carrier field. We used the setup to characterize g(2)(tau) for thermal and coherent states and investigated its immunity to optical loss. We measured g(2)(tau) of a displaced-squeezed state and found a best antibunching statistic of g(2)(0)=0.11+/-0.18.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call