Abstract

Noise in data is not uncommon in real-world cases, although it is commonly omitted from performance measurement studies. In this paper, we develop a stochastic DEA-based methodology to measure performance when the endogenous (e.g. efficiency) and exogenous variables (e.g. perspectives of patients’ satisfaction), which are incorporated in the assessment, are inversely related. This methodology identifies benchmark units that are not only efficient but are also assigned scores for their exogenous variables, which are at least equal to user-defined critical values. We apply the performance measurement methodology to the 14 largest Cypriot health centers. The advantages of our methodology are pointed out through comparative analysis with alternative stochastic and non-stochastic DEA approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.