Abstract

In quantum theory, a physical observable is represented by a Hermitian operator as it admits real eigenvalues. This stems from the fact that any measuring apparatus that is supposed to measure a physical observable will always yield a real number. However, reality of eigenvalue of some operator does not mean that it is necessarily Hermitian. There are examples of non-Hermitian operators which may admit real eigenvalues under some symmetry conditions. However, in general, given a non-Hermitian operator, its average value in a quantum state is a complex number and there are only very limited methods available to measure it. Following standard quantum mechanics, we provide an experimentally feasible protocol to measure the expectation value of any non-Hermitian operator via weak measurements. The average of a non-Hermitian operator in a pure state is a complex multiple of the weak value of the positive semi-definite part of the non-Hermitian operator. We also prove a new uncertainty relation for any two non-Hermitian operators and show that the fidelity of a quantum state under quantum channel can be measured using the average of the corresponding Kraus operators. The importance of our method is shown in testing the stronger uncertainty relation, verifying the Ramanujan formula and in measuring the product of non commuting projectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.