Abstract

In search of a complete understanding of a joint’s function, one must understand both the anatomic parameters and how the brain controls the joint’s actuation. Accurate measurements of anatomical parameters are critical to non-linear biomechanical modeling and control and also to a clinical understanding of orthopaedic reconstruction. Likewise, new frontiers in the study of neuromuscular control contribute to our understanding of joint structure and function. One approach to study joint function is to use a joint simulator to actuate cadaver limbs. Towards the goals of understanding and improving human elbow joint control, a physiologic elbow joint simulator was previously constructed in our laboratory. It is the first elbow simulator to operate completely under closed-loop control. The closed-loop force control used to study joint mechanics permits measurement of moment arms in cadaveric elbow specimens. We hypothesized that the approach yields comparable results to previously-reported moment arm values.[1]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.