Abstract
A theoretical framework is presented for the design and analysis of ultrafast time- and polarization-resolved surface vibrational spectroscopy, aimed at elucidating surface molecular reorientational motion in real time. Vibrational excitation with linearly polarized light lifts the azimuthal symmetry of the surface transition-dipole distribution, causing marked, time-dependent changes in the surface sum-frequency generation (SFG) intensity. The subsequent recovery of the SFG signal generally reflects both vibrational relaxation and reorientational motion of surface molecules. We present experimental schemes that allow direct quantification of the time scale of surface molecular reorientational diffusive motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.