Abstract

A method based on Kelvin probe force microscopy for measuring minority-carrier diffusion length in semiconductors is described. The method is based on measuring the surface photovoltage between the tip of an atomic force microscope and the surface of an illuminated semiconductor junction. The photogenerated carriers diffuse to the junction and change the contact potential difference between the tip and the sample, as a function of the distance from the junction. The diffusion length L is then obtained by fitting the measured contact potential difference using the minority-carrier continuity equation. The method was applied to measurements of electron diffusion length in GaP $\mathrm{pn}$ and Schottky junctions. The measured diffusion length was found to be $\ensuremath{\sim}2 \ensuremath{\mu}\mathrm{m},$ in good agreement with electron beam induced current measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.