Abstract

Current evaluation metrics for machine translation have increasing difficulty in distinguishing good from merely fair translations. We believe the main problem to be their inability to properly capture meaning: A good translation candidate means the same thing as the reference translation, regardless of formulation. We propose a metric that assesses the quality of MT output through its semantic equivalence to the reference translation, based on a rich set of match and mismatch features motivated by textual entailment. We first evaluate this metric in an evaluation setting against a combination metric of four state-of-the-art scores. Our metric predicts human judgments better than the combination metric. Combining the entailment and traditional features yields further improvements. Then, we demonstrate that the entailment metric can also be used as learning criterion in minimum error rate training (MERT) to improve parameter estimation in MT system training. A manual evaluation of the resulting translations indicates that the new model obtains a significant improvement in translation quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.