Abstract
We present a computational method, termed Wasserstein-induced flux (WIF), to robustly quantify the accuracy of individual localizations within a single-molecule localization microscopy (SMLM) dataset without ground- truth knowledge of the sample. WIF relies on the observation that accurate localizations are stable with respect to an arbitrary computational perturbation. Inspired by optimal transport theory, we measure the stability of individual localizations and develop an efficient optimization algorithm to compute WIF. We demonstrate the advantage of WIF in accurately quantifying imaging artifacts in high-density reconstruction of a tubulin network. WIF represents an advance in quantifying systematic errors with unknown and complex distributions, which could improve a variety of downstream quantitative analyses that rely upon accurate and precise imaging. Furthermore, thanks to its formulation as layers of simple analytical operations, WIF can be used as a loss function for optimizing various computational imaging models and algorithms even without training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.