Abstract

The dynamic mechanical processes can notably impact the van der Waals (vdW) interaction at nanoscale contact interface and further interfacial thermal transport, but the experimental study is challenging. Here, by integrating a movable nanoprobe within an electron microscope, we dynamically adjusted the contact and detachment processes of vdW contact between two carbon nanotubes (CNTs), while measuring the thermal contact resistance (TCR) in situ with a nanofabricated thermal sensor. The TCR was found to span approximately two orders of magnitude at the moments when two CNTs just came into contact or detached. Surprisingly, during the initial stage of detachment, we observed that TCR unexpectedly further decreased by 65% instead of increasing. This decrease is attributed to the subtle alteration of exact contact interface in the circumferential direction, induced by the real-time observed rotation during the detachment process. A two-order magnitude difference in TCR for the diverse morphologies in static equilibrium between the same pair of CNTs due to the non-uniformity of the CNT surface structures can also support it. Our work provides valuable insights for dynamically modulating nanoscale interfacial thermal transport in various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.