Abstract
In this chapter the authors study the propagation and processing of information in dynamical systems. Various information management systems can be represented as dynamical systems of interconnected information processing units. Here they focus mostly on genetic regulatory networks that are information processing systems that process and propagate information stored in genome. Boolean networks are used as a dynamical model of regulation, and different ways of parameterizing the dynamical behavior are studied. What are called critical networks are in particular under study, since they have been hypothesized as being the most effective under evolutionary pressure. Critical networks are also present in man-made systems, such as the Internet, and provide a candidate application area for findings on the theory of dynamical networks in this chapter. The authors present approaches of annealed approximation and find that avalanche size distribution data supports criticality of regulatory networks. Based on Shannon information, they then find that a mutual information measure quantifying the coordination of pairwise element activity is maximized at criticality. An approach of algorithmic complexity, the normalized compression distance (NCD), is shown to be applicable to both dynamical and topological features of regulatory networks. NCD can also be seen to enable further utilization of measurement data to estimate information propagation and processing in biological networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.