Abstract

HypothesisCapillary pressure (Pc) is an intrinsic property of aqueous foams that has been demonstrated to play an important role in lamella rupture. Thus, directly measuring in-situ capillary pressure of a foam flowing through porous media has potential to greatly improve understanding of this complex process. ExperimentsA capillary pressure probe was constructed and validated. Direct measurements of capillary pressure were made at ambient conditions during foam quality scan experiments in a transparent 1.41 × 10−10 m2 (143-Darcy) homogenous sand pack conducted at constant gas velocity. The foam texture was simultaneously visualized at the wall of the sand pack via microscope. FindingsIn the low-quality regime, a plateauing trend in Pc was identified. In-situ microscopic visualization of the flowing foam revealed that gas bubbles were convecting with a fine discontinuous texture while Pc is at the plateau value Pcp. In the high-quality regime, the measured capillary pressures first decreased with increasing quality before increasing again at the driest qualities. These changes in Pc correlated with foam bubbles becoming coarser with increasing injected gas fractional flow before transitioning to continuous-gas flow at the slowest and driest injection conditions. These findings have been previously unreported for steady-state flow conditions and shall have significant implications for the general physical description of foam flow in porous media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call