Abstract

In many applications, we need to measure similarity between nodes in a large network based on features of their neighborhoods. Although in-network node similarity based on proximity has been well investigated, surprisingly, measuring in-network node similarity based on neighborhoods remains a largely untouched problem in literature. One grand challenge is that in different applications we may need different measurements that manifest different meanings of similarity. In this paper, we investigate the problem in a principled and systematic manner. We develop a unified parametric model and a series of four instance measures. Those instance similarity measures not only address a spectrum of various meanings of similarity, but also present a series of tradeoffs between computational cost and strictness of matching between neighborhoods of nodes being compared. By extensive experiments and case studies, we demonstrate the effectiveness of the proposed model and its instances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.