Abstract

Abstract A field experiment was carried out to measure hydraulic fracture growth in naturally fractured rock. Hydraulic fracture interactions with pre-existing natural fractures, shear zones, veins, and adjacent hydraulic fractures were measured and mapped during the project. Tiltmeter and microseismic arrays were installed to test the performance of these monitoring methods in determining the fracture geometry, which was eventually revealed by the mine-through mapping. The physically mapped fractures were oriented approximately horizontally, perpendicular to the minimum stress direction. They crossed natural fractures and shear zones, but were offset by some shear zones, most often oriented with an approximate 45° dip. The analysis of the tiltmeter data correctly predicted fractures to be horizontal. Microseismic monitoring, although a proven method for imaging hydraulic fractures, did not resolve the fracture orientation or size for conditions at the E48 Northparkes site because of a lack of recorded micro-seismic events. The hydraulic fractures grew through solid rock, along natural fractures and stepped along inclined shear zones. Proppant was distributed throughout the fractures, including in the offset portions. Initial modeling indicates higher treatment pressure and slower extension rate for a stepped 2D hydraulic fracture compared to a straight fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call