Abstract

The glass transition temperature is a key parameter of polymer coating layers that protect optical fibers, and it affects the proper function of the fibers in their service environment. Established protocols for glass transition temperature measurements are destructive, require samples of specific geometries, and may only be carried out offline. In this work, we report the nondestructive measurement of the glass transition temperature of an acrylate polymer coating layer over a working standard fiber. The method is based on forward stimulated Brillouin scattering. A large decrease in the modulus of the coating layer above the glass transition temperature manifests in the narrowing of the modal linewidths in the forward Brillouin scattering spectrum. The transition temperature agrees with the standard dynamic mechanical analysis of samples made of the same polymer. The protocol can be useful for coating materials research and development, production line quality assurance, and preventive maintenance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.