Abstract

The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure. In lipid mixtures, typical of living cells, linear interfaces separate liquid ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures. Here, we consider such membranes supported by curved substrates that thereby control the membrane curvatures. We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases. We provide a number of conditions for such interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the Gaussian rigidity, while remaining in the perturbative regime of our analysis.

Highlights

  • The Gaussian rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure

  • Typical of living cells, linear interfaces separate liquid ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures

  • We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases

Read more

Summary

Introduction

The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure. We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases. We provide a number of conditions for such interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the Gaussian rigidity, while remaining in the perturbative regime of our analysis.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.