Abstract

Many biological materials fail by cracking. Examples are bone fractures, contact damage in eggs, splits in bamboo culm and defects in cartilage. The mechanical property that best describes failure by cracking is fracture toughness, which quantifies the ease with which cracks propagate and defines a material's tolerance for pre-existing cracks and other stress concentrating features. The measurement of fracture toughness presents some challenges, especially for biological materials. To obtain valid results requires care and, in many cases, considerable ingenuity to design an appropriate specimen and test protocol. Common mistakes include incorrect interpretation of the mechanics of loading in unusual specimen designs, and failures occurring at the material's ultimate tensile strength as a result of specimens or cracks being too small. Interpretation of the resulting toughness data may also present challenges, for example when R-curve behaviour is present. In this article, examples of good and bad practice are described, and some recommendations made.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.