Abstract

The dynamic fracture behavior of a brittle polymer, polymethyl methacrylate (PMMA), was studied using single-edge-cracked tensile specimens and the method of caustics in combination with high-speed photography. The dynamic response of the specimen and the state of local stress near the crack tip, i.e., the stress intensity factor K, were measured. To analyze the dynamic response, the external work, Uex, applied to the specimen was partitioned into three components: the elastic energy, Ee; non-elastic energy, En, due to viscoelastic and plastic deformation; and fracture energy, Ef, for creating a new fracture surface, As. The results showed that Ee, En, and Ef increased with Uex, and the ratio Ef/Uex was about 46% over a wide range of Uex. Energy release rates were estimated using Gt = Uex/As and Gf = Ef/As. The mean energy release rate, Gm, during dynamic crack propagation was also determined using the value of K. A good correlation between Gf and Gm was found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.