Abstract
Abstract Cancers progress through the accumulation of somatic mutations which accrue during tumour evolution, allowing some cells to proliferate in an uncontrolled fashion. This growth process is intimately related to latent evolutionary forces moulding the genetic and epigenetic composition of tumour subpopulations. Understanding cancer requires therefore the understanding of these selective pressures. The adoption of widespread next-generation sequencing technologies opens up for the possibility of measuring molecular profiles of cancers at multiple resolutions, across one or multiple patients. In this review we discuss how cancer genome sequencing data from a single tumour can be used to understand these evolutionary forces, overviewing mathematical models and inferential methods adopted in field of Cancer Evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Statistical Applications in Genetics and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.