Abstract
The mammalian mitotic spindle segregates an equal number of chromosomes to daughter cells. Over the course of spindle assembly, many initially erroneous attachments between kinetochores and microtubules are fixed through a process called error correction. Despite the importance of chromosome segregation errors in many human health conditions, we lack quantitative methods to characterize the dynamic error correction process and how it is impaired in disease states. We have developed a novel experimental method and analysis framework to quantify chromosome segregation error correction in human tissue culture cells with live cell confocal imaging of spindle assembly, timed premature chromosome separation, and automated counting of kinetochores after cell division.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.