Abstract

AbstractComet 67P/Churyumov‐Gerasimenko displays a pronounced hemispherical dichotomy in surface morphology, where the southern hemisphere exhibits more erosional features than the northern hemisphere due to receiving much greater solar radiation. Consequently, it is generally assumed that particles are ejected from the southern hemisphere through sublimation and a significant fraction eventually descends as airfall, covering the northern terrains. To investigate this south‐to‐north material transfer during the comet's perihelion passage, we used photoclinometry to measure material redistribution within its most extensive smooth terrain deposit around the Imhotep region. However, our findings do not align with this expected trend. Instead, we show that local‐scale processes substantially impact the erosion and accumulation of material, with one area experiencing net erosion while another nearby region, just a few dozen meters away, sees sediment buildup. Our analysis underscores the complex interplay of processes shaping Comet 67P's surface and likely comets more generally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call