Abstract

Early detection is a matter of growing importance in multiple domains as network security, health conditions over social network services or weather forecasts related disasters. It is not enough to make a good decision but it also needs to be made on time. In this paper, we define a method to evaluate detection of anomalies in time-aware systems. To do so, we present the early detection problem from a generic perspective, examine the evaluation metrics available and propose a new metric, named <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TaP (Time aware Precision)</i> . A set of experiments using three different datasets from different fields are performed in order to compare the behaviour of the different metrics. Two different approaches were followed, first a batch evaluation is performed, followed by a streaming evaluation which allows to present a more realistic behaviour of the systems. For both steps, we propose two sets of experiments. The first one using baseline models, followed by the evaluation of a set of Machine Learning algorithms results. The presented metric allows the amount of items needed to take a decision to be taken into account, not depending on the specific dataset but on the nature of the problem to solve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.