Abstract
A digital image correlation (DIC) algorithm for displacement measurements combining cross-correlation and a differential technique was validated through a set of experimental tests. These tests consisted of in-plane rigid-body translation and rotation tests, a tensile mechanical test, and a mode I fracture test. The fracture mechanical test, in particular, was intended to assess the accuracy of the method when dealing with discontinuous displacement fields, for which subset-based image correlation methods usually give unreliable results. The proposed algorithm was systematically compared with the Aramis® DIC-2D commercial code by processing the same set of images. When processing images from rigid-body and tensile tests (associated with continuous displacement fields), the two methods provided equivalent results. When processing images from the fracture mechanical test, however, the proposed method obtained a better qualitative description of the discontinuous displacements. Moreover, the proposed method gave a more reliable estimation of both crack length and crack opening displacement of the fractured specimen.©
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.