Abstract

BackgroundCollaboration is vital within health care institutions, and it allows for the effective use of collective health care worker (HCW) expertise. Human-computer interactions involving electronic health records (EHRs) have become pervasive and act as an avenue for quantifying these collaborations using statistical and network analysis methods.ObjectiveWe aimed to measure HCW collaboration and its characteristics by analyzing concurrent EHR usage.MethodsBy extracting concurrent EHR usage events from audit log data, we defined concurrent sessions. For each HCW, we established a metric called concurrent intensity, which was the proportion of EHR activities in concurrent sessions over all EHR activities. Statistical models were used to test the differences in the concurrent intensity between HCWs. For each patient visit, starting from admission to discharge, we measured concurrent EHR usage across all HCWs, which we called temporal patterns. Again, we applied statistical models to test the differences in temporal patterns of the admission, discharge, and intermediate days of hospital stay between weekdays and weekends. Network analysis was leveraged to measure collaborative relationships among HCWs. We surveyed experts to determine if they could distinguish collaborative relationships between high and low likelihood categories derived from concurrent EHR usage. Clustering was used to aggregate concurrent activities to describe concurrent sessions. We gathered 4 months of EHR audit log data from a large academic medical center’s neonatal intensive care unit (NICU) to validate the effectiveness of our framework.ResultsThere was a significant difference (P<.001) in the concurrent intensity (proportion of concurrent activities: ranging from mean 0.07, 95% CI 0.06-0.08, to mean 0.36, 95% CI 0.18-0.54; proportion of time spent on concurrent activities: ranging from mean 0.32, 95% CI 0.20-0.44, to mean 0.76, 95% CI 0.51-1.00) between the top 13 HCW specialties who had the largest amount of time spent in EHRs. Temporal patterns between weekday and weekend periods were significantly different on admission (number of concurrent intervals per hour: 11.60 vs 0.54; P<.001) and discharge days (4.72 vs 1.54; P<.001), but not during intermediate days of hospital stay. Neonatal nurses, fellows, frontline providers, neonatologists, consultants, respiratory therapists, and ancillary and support staff had collaborative relationships. NICU professionals could distinguish high likelihood collaborative relationships from low ones at significant rates (3.54, 95% CI 3.31-4.37 vs 2.64, 95% CI 2.46-3.29; P<.001). We identified 50 clusters of concurrent activities. Over 87% of concurrent sessions could be described by a single cluster, with the remaining 13% of sessions comprising multiple clusters.ConclusionsLeveraging concurrent EHR usage workflow through audit logs to analyze HCW collaboration may improve our understanding of collaborative patient care. HCW collaboration using EHRs could potentially influence the quality of patient care, discharge timeliness, and clinician workload, stress, or burnout.

Highlights

  • The measurement of coordinated collaboration in health care systems has proven to be important for providing better quality care [1,2,3,4,5,6,7,8,9]

  • Leveraging concurrent electronic health record (EHR) usage workflow through audit logs to analyze health care worker (HCW) collaboration may improve our understanding of collaborative patient care

  • 2,840,249 actions performed by 3303 HCWs to EHRs of 382 neonatal intensive care unit (NICU) patients

Read more

Summary

Introduction

The measurement of coordinated collaboration in health care systems has proven to be important for providing better quality care [1,2,3,4,5,6,7,8,9]. Existing studies approached collaboration by relying on surveys, written reports, and interviews as a basis for gauging collaboration [1,2,3,4,5,6,7,8,9]. They examined communication, teamwork, and problem-solving in HCOs, noting that interprofessional team functions are often suboptimal [3,7]. Human-computer interactions involving electronic health records (EHRs) have become pervasive and act as an avenue for quantifying these collaborations using statistical and network analysis methods

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.