Abstract

A student's capacity to learn a concept is directly related to how much cognitive load is used to comprehend the material. The central problem identified by Cognitive Load Theory is that learning is impaired when the total amount of processing requirements exceeds the limited capacity of working memory. Instruction can impose three different types of cognitive load on a student's working memory: intrinsic load, extraneous load, and germane load. Since working memory is a fixed size, instructional material should be designed to minimize the extraneous and intrinsic loads in order to increase the amount of memory available for the germane load. This will improve learning. To effectively design instruction to minimize cognitive load we must be able to measure the specific load components for any pedagogical intervention. This paper reports on a study that adapts a previously developed instrument to measure cognitive load. We report on the adaptation of the instrument to a new discipline, introductory computer science, and the results of measuring the cognitive load factors of specific lectures. We discuss the implications for the ability to measure specific cognitive load components and use of the tool in future studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call