Abstract

This paper reports on a field study that was part of a large-scale, multi-seasonal research study with the North Carolina Department of Environment, Health, and Natural Resources, to measure nitrogen emissions from an intensive swine confinement facility. The study measured emission rates using tracer gases and a horizontal network of open-path Fourier transform infrared (FTIR) optical rays placed less than a meter above the surface of an approximately 6 acre intensive swine waste lagoon in Eastern North Carolina. This network of rays simultaneously monitored the ammonia and the tracer gases every 2 min. The open-path measurements were combined with the mathematical mapping techniques of computer-assisted tomography (CAT) to create two-dimensional concentration maps of the gases for the entire lagoon surface. For this study, a ratioing technique was applied to the tomographic concentration maps to estimate the nitrogen emission rates (from ammonia) using known tracer emission rates. The average concentrations of ammonia measured in August, November, and May were 0.81, 0.25, and 0.74 ppm, respectively. In general, ammonia concentrations were lowest at the center of the lagoon and could vary across a lagoon from 2 to 4 times depending upon the time of the day and the meteorological conditions. Emission rates were only calculated for November and May, up until midnight. In November 1997, the average flux was 1910 μg N m −2-min −1 (range 542–4695 μg N m −2-min −1) and in May the average flux was 4775 μg N m −2-min −1 (range 2572–8499 μg N m −2-min −1). This study was important because it not only provided nitrogen emission rate measurements using a new technology which can measure concentrations over large areas in real time, it was the first large-scale outdoor field study using this application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.