Abstract

The electrical Next Generation Impactor (eNGI) was assessed against the electrical low-pressure impactor (ELPI) and next generation impactor (NGI) for its capability to characterise particle size and electrostatic charge properties of dry powder inhaler (DPI) formulations. Following assessment, the relationship between inhalational air flow rate and drug powder charge was explored using the eNGI. At a vacuum flow rate of 30 L/min, doses of Pulmicort ® (budesonide 400 μg) and Bricanyl ® (terbutaline 500 μg) were dispersed into the ELPI, NGI and eNGI, from which particle size profiles and charge profiles were ascertained. Further doses of Pulmicort and Bricanyl were fired into the eNGI at vacuum air flow rates of 45, 60, 75 and 90 L/min, and the resultant size and charge profiles were determined. Particle size profiles at 30 L/min were found to be comparable between the NGI and eNGI, while charge profiles were comparable between the eNGI and ELPI. As air flow rate increased from 30 to 90 L/min, in vitro aerosol performance improved before reaching a peak at 45 L/min (Pulmicort) and 60 L/min (Bricanyl). Net charge also increased with flow rate, the cause of which may be a combination of increased turbulence and aerosol performance. This study demonstrates that the eNGI is capable of electrostatic and particle size characterization of commercial drug-only DPI products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.