Abstract

This study focuses on the qualitative and quantitative characterization of chaotic systems with the use of a symbolic description. We consider two famous systems, Lorenz and Rössler models with their iconic attractors, and demonstrate that with adequately chosen symbolic partition, three measures of complexity, such as the Shannon source entropy, the Lempel-Ziv complexity, and the Markov transition matrix, work remarkably well for characterizing the degree of chaoticity and precise detecting stability windows in the parameter space. The second message of this study is to showcase the utility of symbolic dynamics with the introduction of a fidelity test for reservoir computing for simulating the properties of the chaos in both models' replicas. The results of these measures are validated by the comparison approach based on one-dimensional return maps and the complexity measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.