Abstract

This paper presents the measurement results of bridge frequencies by a test vehicle in non-moving and moving states. The self-made test vehicle fitted with vibration sensors is a two-wheel trailer, intentionally used to simulate the theoretical single degree-of-freedom system. The two-span bridge selected is located in the Chongqing University campus. For the purpose of comparison, the bridge frequencies were firstly measured by direct deployment of vibration sensors on the bridge. The dynamic properties of the test vehicle in the non-moving state, including the transmissibility, are examined in detail. Based on the measured car-body response, the contact-point response of the vehicle with the bridge was calculated by a backward procedure that allows the vehicle frequency to be eliminated. It was found that the vehicle in the non-moving state can catch more bridge frequencies than in the moving state. Both the car-body and contact-point responses agree well the results by direct measurement. But the contact-point response performs better than the car-body response, which can be used to detect the first few frequencies of the bridge, including the torsional frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call