Abstract

Bone densitometry is used to assess skeletal health in clinical and research settings, with the goal of achieving reproducible measurements of bone mass that help to identify individuals predisposed to fracture. The search is now on for better methods of capturing additional factors that contribute to bone strength, including bone size, geometry, microarchitecture, and turnover rates. This has proved particularly challenging in growing children, whose bones continually change in size, shape, and mass. Dual energy X-ray absorptiometry is the preferred method for measuring bone mass in children, but the technique has several limitations, and interpreting the findings can be problematic. Peripheral quantitative computed tomography is a promising method for assessing bone mass and other indices correlating with bone strength, but a lack of precision and paediatric norms currently restricts its clinical utility. Although bone mineral density is predictive of future fracture risk in adults, the evidence in children is less conclusive, and a diagnosis of osteoporosis in a child should not be made on densitometric findings alone. Developing a clearer understanding of how measures of bone mass and strength correlate with bone fracture in children will help target preventive strategies for those in greatest need.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.