Abstract

The binding and speciation of hydrophobic organic chemicals (HOCs) in aqueous solutions were determined by controlling chemical activity and measuring total concentrations. Passive dosing was applied to control chemical activities of HOCs in aqueous solutions by equilibrium partitioning from a poly(dimethylsiloxane) polymer preloaded with the chemicals. The HOC concentrations in the equilibrated solutions [C(solution(eq))] and water [C(water(eq))] were then measured. Free fractions of the HOCs were determined as C(water(eq))/C(solution(eq)), whereas enhanced capacities (E) of the solutions for HOCs were determined as C(solution(eq))/C(water(eq)). A mixture of polycyclic aromatic hydrocarbons served as model analytes, while humic acid, sodium dodecyl sulfate, hydroxypropyl-β-cyclodextrin, and NaCl served as model medium constituents. The enhanced capacities were plotted versus the concentrations of medium constituents, and simple linear regression provided precise partition ratios, salting out constants, and critical micelle concentrations. These parameters were generally in good agreement with published values obtained by solid phase microextraction and fluorescence quenching. The very good precision was indicated by the low relative standard errors for the partition ratios of 0.5-8%, equivalent to 0.002-0.03 log unit. This passive dosing approach allows binding and speciation of HOCs to be studied without any phase separation steps or mass balance assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.