Abstract

A new passive dosing method was developed to determine aqueous solubility of hydrophobic chemicals. In the passive dosing method, chemical crystals were loaded to a polydimethylsiloxane (PDMS) phase to maintain the maximum chemical activity and to prevent direct contact of chemical crystals with the aqueous solution. Eight polycyclic aromatic hydrocarbons (PAHs) were chosen covering their literature aqueous solubility from 0.001 to 30 mg L(-1). Values of the aqueous solubility for less hydrophobic PAHs (naphthalene, 2-methylnaphthalene, and fluorene) were measured by an Organization for Economic Co-ordination and Development (OECD)-recommended generator column method and those for more hydrophobic PAHs (anthracene, chrysene, and benzo(a)pyrene) were measured by the passive dosing method. For phenanthrene and pyrene, both methods were used for comparison. The results obtained by the passive dosing method were very close to those obtained by the generator column method. Aqueous solubilities in deionized water for more hydrophobic PAHs obtained using the passive dosing method agreed very well with values reported in the literature, suggesting the utility of the passive dosing method for the determination of aqueous solubility for highly hydrophobic chemicals. Because hydrophobic chemicals are often introduced in aqueous solutions by using a cosolvent, the solubility enhancement for PAHs at low cosolvent volume fractions was also evaluated. Three cosolvents (dimethyl sulfoxide, ethanol, and acetone) were chosen and their volume fractions in water were between 0.2% and 2%. The enhancement of the aqueous solubility could be well explained quantitatively by using a log-linear cosolvency model. The measured values of cosolvency power at the range of volume fraction investigated (σ(0.02)) correlated very well with log K(ow) of the PAHs. The combination of the log-linear model and semiempirical relationships between σ(0.02) and log K(ow) would be useful for the prediction of the solubility enhancement of hydrophobic chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.