Abstract

The traditional synthesis question given a specification asks for the automatic construction of a system that satisfies the specification, whereas often there exists a preference order among the different systems that satisfy the given specification. Under a probabilistic assumption about the possible inputs, such a preference order is naturally expressed by a weighted automaton, which assigns to each word a value, such that a system is preferred if it generates a higher expected value. We solve the following optimal synthesis problem: given an omega-regular specification, a Markov chain that describes the distribution of inputs, and a weighted automaton that measures how well a system satisfies the given specification under the input assumption, synthesize a system that optimizes the measured value. For safety specifications and quantitative measures that are defined by mean-payoff automata, the optimal synthesis problem reduces to finding a strategy in a Markov decision process (MDP) that is optimal for a long-run average reward objective, which can be achieved in polynomial time. For general omega-regular specifications along with mean-payoff automata, the solution rests on a new, polynomial-time algorithm for computing optimal strategies in MDPs with mean-payoff parity objectives. Our algorithm constructs optimal strategies that consist of two memoryless strategies and a counter. The counter is in general not bounded. To obtain a finite-state system, we show how to construct an ϵ-optimal strategy with a bounded counter, for all ϵ > 0. Furthermore, we show how to decide in polynomial time if it is possible to construct an optimal finite-state system (i.e., a system without a counter) for a given specification. We have implemented our approach and the underlying algorithms in a tool that takes qualitative and quantitative specifications and automatically constructs a system that satisfies the qualitative specification and optimizes the quantitative specification, if such a system exists. We present some experimental results showing optimal systems that were automatically generated in this way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.