Abstract

Sorption of cobalt (CoII) ions from aqueous solution by waste calcite, kaolinite and zeolite was investigated in a series of batch experiments. The sorption capacity of the sorbents was a function of the initial solution pH, contact time and sorbent/sorbate ratio. For these three sorbents, the kinetic and isotherm experimental data were well fitted to pseudo-second-order and Langmuir equations, respectively. The maximum sorption capacity (mg g−1) of Co(II) was 4.67, 3.76 and 2.23 for waste calcite, zeolite and kaolinite, respectively. Desorption experiments showed that the desorption capacities were in the order of zeolite > kaolinite > waste calcite. The equilibrium and kinetic results indicated that waste calcite had the best performance for the removal of Co(II) compared to zeolite and kaolinite. To simulate and predict Co(II) sorption mechanisms, the surface complexation and cation exchange models in PHREEQC program were used. The model results suggested that the main mechanisms of Co(II) sorption on waste calcite and zeolite were surface complexation and cation exchange, respectively. In the case of kaolinite, the model predicted that both mechanisms were involved in the sorption of Co(II), but the surface complexation was the predominant mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.