Abstract

Graph Neural Networks (GNNs) have achieved promising performance on a wide range of graph-based tasks. Despite their success, one severe limitation of GNNs is the over-smoothing issue (indistinguishable representations of nodes in different classes). In this work, we present a systematic and quantitative study on the over-smoothing issue of GNNs. First, we introduce two quantitative metrics, MAD and MADGap, to measure the smoothness and over-smoothness of the graph nodes representations, respectively. Then, we verify that smoothing is the nature of GNNs and the critical factor leading to over-smoothness is the low information-to-noise ratio of the message received by the nodes, which is partially determined by the graph topology. Finally, we propose two methods to alleviate the over-smoothing issue from the topological view: (1) MADReg which adds a MADGap-based regularizer to the training objective; (2) AdaEdge which optimizes the graph topology based on the model predictions. Extensive experiments on 7 widely-used graph datasets with 10 typical GNN models show that the two proposed methods are effective for relieving the over-smoothing issue, thus improving the performance of various GNN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.