Abstract

Traditional metal cans and glass jars have been the mainstay in thermally processed canned foods for more than a century, but are now sharing shelf space with increasingly popular flexible pouches and semi-rigid trays. These flexible packages lack the strength of metal cans and glass jars, and need greater control of external retort pressure during processing. Increasing internal package pressure without counter pressure causes volumetric expansion, putting excessive strain on package seals that may lead to serious container deformation and compromised seal integrity. The primary objective of this study was to measure internal pressure build-up within a rigid air-tight container (module) filled with various model food systems undergoing a retort process in which internal product temperature and pressure, along with external retort temperature and pressure, were measured and recorded at the same time. The pressure build-up in the module was compared with the external retort pressure to determine the pressure differential that would cause package distortion in the case of a flexible package system. The secondary objective was to develop mathematical models to predict these pressure profiles in response to known internal temperature and initial and boundary conditions for the case of the very simplest of model food systems (pure water and aqueous saline and sucrose solutions), followed by food systems of increasing compositional complexity (green beans in water and sweet peas in water). Results showed that error between measured and predicted pressures ranged from 2% to 4% for water, saline, and green beans, and 7% to 13% for sucrose solution and sweet peas. Flexible packages have limited strength, and need more accurate and closer control of retort pressure during processing. The package becomes more flexible as it heats and might expand with increasing internal pressure that may cause serious deformation or rupture if not properly controlled and/or counterbalanced with external retort pressure. This article describes methods for determining exactly what the retort pressure profile will need to be to avoid this problem during retorting, and mathematical models to predict these pressures in response to known internal temperature and initial/boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call