Abstract

In this work, we present a methodology for measuring and optimizing the credit risk of a loan portfolio taking into account the non‐normality of the credit loss distribution. In particular, we aim at modelling accurately joint default events for credit assets. In order to achieve this goal, we build the loss distribution of the loan portfolio by Monte Carlo simulation. The times until default of each obligor in portfolio are simulated following a copula‐based approach. In particular, we study four different types of dependence structure for the credit assets in portfolio: the Gaussian copula, the Student's t‐copula, the grouped t‐copula and the Clayton n‐copula (or Cook–Johnson copula). Our aim is to assess the impact of each type of copula on the value of different portfolio risk measures, such as expected loss, maximum loss, credit value at risk and expected shortfall. In addition, we want to verify whether and how the optimal portfolio composition may change utilizing various types of copula for describing the default dependence structure. In order to optimize portfolio credit risk, we minimize the conditional value at risk, a risk measure both relevant and tractable, by solving a simple linear programming problem subject to the traditional constraints of balance, portfolio expected return and trading. The outcomes, in terms of optimal portfolio compositions, obtained assuming different default dependence structures are compared with each other. The solution of the risk minimization problem may suggest us how to restructure the inefficient loan portfolios in order to obtain their best risk/return profile. In the absence of a developed secondary market for loans, we may follow the investment strategies indicated by the solution vector by utilizing credit default swaps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.