Abstract

Rainfall loss by canopy interception and subsequent evaporation to the atmosphere can be a significant portion of water loss from forested ecosystems. To quantify and compare interception losses from two forest types (exotic pine plantation vs. displaced native Banksia woodland) on Bribie Island in subtropical east coast Australia, we measured gross rainfall, throughfall and stemflow over a one-year period (May 2012–April 2013). Interception losses from both forests were also simulated by the revised Gash’s analytical model (RGAM) and the WiMo model. The results show that the annual interception loss in the Banksia woodland was lower (16.4% of gross rainfall) than that in the pine plantation (22.9% of gross rainfall) over the study period, which can be explained by the lower canopy storage capacity and higher aerodynamic resistance of the Banksia woodland. Using fixed parameters obtained from wet season (November–April), the optimized RGAM and WiMo models predict the interception losses from both forest stands reasonably well, with an underestimation of 8.5–12.7% for the dry season (May–October), and a total underestimation of 5.2–8.2% for the entire year. The results indicate the development of commercial pine plantations in these areas would result in an increase in interception losses and thus reduce the net rainfall input in these forested ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.