Abstract

At conventional pay tolls, vehicles joining a queue must come to a stop and undergo several stop-and-go cycles until payment is completed. As a result, emissions increase because of excessive delays, queuing, and speed change cycles for approaching traffic. The main objective of this research is to quantify traffic and emission impacts of toll facilities in urban corridors. As a result of experimental measurements of traffic and emissions, the impact of traffic and emission performance of conventional and electronic toll facilities is presented. The approach attempts to explain the interaction between toll system operational variables (traffic demand, service time, and service type) and system performance variables (stops, queue length, and emissions). The experimental data for validating the numerical traffic model were gathered on pay tolls located in three main corridors that access the city of Lisbon, Portugal. The emissions model is based on real-world onboard measurements of vehicle emissions. With the appropriate speed profiles of vehicles in pay tolls, onboard emission measurements were carried out to quantify the relationships between vehicle dynamics and emissions. The main conclusion of this work is that there are two different types of stop-and-go driving cycles for vehicles joining the queue at a conventional toll booth: short and long. The length of each cycle depends on the expected queue length at the toll booth and the frequency of each cycle directly affects the level of vehicle emissions. The greatest percentage of emissions for a vehicle that stops at a pay toll is due to its final acceleration back to cruise speed after leaving the pay toll.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.